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ABSTRACT

This paper introduces an online receiver for multiaccess multiple-

input multiple-output (MIMO) channels by using kernel functions.

The receiver implicitly operates, with linear complexity, in a general

infinite dimensional Reproducing Kernel Hilbert Space (RKHS). Given

a training sequence of symbols, the problem is viewed as a sequential

multiregression oprimization problem, where any continuous convex

cost function, even non-differentiable, can be used. Numerical ex-

amples show that the proposed receiver outperforms linear receivers,

built upon the well-known orthogonal space-time block codes, in

cases where severe multiaccess interference is present.

1. INTRODUCTION

Kernel methods have become recently the main tool for translating

classical linear supervised and unsupervised techniques to nonlinear

learning algorithms [1]. The key point of kernel methods is a nonlin-

ear (implicit) mapping, which “transfers” the processing from a low

dimensional Euclidean data space to a very high (possibly infinite)

dimensional Reproducing Kernel Hilbert Space (RKHS) [1]. This

nonlinear mapping is supplied by a kernel function which, basically,

defines the RKHS.

Kernel methods have been shown to be highly successful mainly

via batch settings, i.e., a finite number of data are available before-

hand, like the celebrated Support Vector Machine (SVM) framework

[1]. The SVM approach has been already employed with success

to MIMO channels [2]. However, batch methods show prohibitively

high computational complexity problems when applied to online set-

tings, i.e., cases where data arrive sequentially, and where environ-

ments exhibit slow variation. Although sliding window versions of

the SVM methodology have been already developed, genuine online

kernel methods are needed [3, 4].

Orthogonal Space-Time Block Codes (OSTBC) is a powerful

technique which enjoys full diversity gain and low decoding com-

plexity in Multiple-Input Multiple-Output (MIMO) environments [5,

6]. In the case where only one transmitter (Tx) is present (point-

to-point MIMO), in additive Gaussian channels, the optimal Maxi-

mum Likelihood (ML) detector, for this class of codes, is realized

by a simple linear filter followed by a symbol-by-symbol decoder

[7]. However, in multiaccess environments, where a multiple num-

ber of Txs is present (see Fig. 1), the complexity of the ML detector

becomes high, and the performance of the OSTBC is degraded due

to severe MultiAccess Interference (MAI), which can no longer be

modeled as white noise [7, 8]. Suboptimal linear receivers, with ex-

cellent performance and low computational complexity have already

been proposed for OSTBC in multiaccess MIMO channels, e.g., re-

fer to [7, 8] and the references therein. However, in order for the

linear receivers to successfully suppress MAI, self-interference, and
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Fig. 1. Multiaccess MIMO model. A number of P transmitters

(Txs), with N antennas per Tx, send symbols via the channel ma-

trices H1, . . . , HP , to a receiver (Rx) with M antennas.

noise, a sufficient number of degrees of freedom is neccessary, im-

posing thus limitations on the number of Txs, as well as on the rate

of the OSTBC employed (see Section 2).

This paper introduces a kernel-based online receiver for MIMO

systems. Unlike the SVM approach [2], here data are considered

to be of sequential nature, as dictated by possibly slow changing

channels. The receiver implicitly operates in a generally infinite di-

mensional RKHS, and the detection problem is modeled as an online

multiregression optimization task. As opposed to [2, 3], where only

a quadratic cost function was employed, the introduced algorithm

is capable of accommodating any continuous convex function, even

non-differentiable. The introduced receiver is of linear complexity

with respect to the unknown parameters. Sparsification issues are

also discussed, in order to deal with computational complexity and

memory limitation issues of online systems. The numerical results

show that the proposed receiver operates well in cases where linear

receivers face problems due to limited degrees of freedom, as im-

posed, for example, by a large number of Txs, a small number of

antennas at the Rx or by the rate of the employed OSTBC.

2. THE MULTIACCESS MIMO MODEL

We will denote the set of all integers, nonnegative integers, positive

integers, real and complex numbers by Z, Z≥0, Z>0, R and C re-

spectively. For any integers j1 ≤ j2, we denote by j1, j2 the set

{j1, j1 + 1, . . . , j2}.

As in [7, 8], we consider in Fig. 1 a multiaccess MIMO system

with P users or transmitters (Txs), N antennas per Tx, and M an-

tennas at the receiver (Rx). Henceforth, the index n will enumerate

the number of data blocks, both for the transmitted and the received



signals. Since the nature of data is considered to be sequential, we

let n ∈ Z≥0. In order to unify the notation, we follow the one de-

veloped for the OSTBC frame in [7, 8]. As such, the n-th block of

signals available at the Rx is given by

Y (n) =
P

∑

p=1

Xp(sp(n))Hp + V (n) ∈ C
T×M . (1)

The vector sp(n) := [sp1(n), . . . , spK(n)]t ∈ C
K , where t stands

for transposition, is the vector that gathers a number of K symbols to

be encoded at every n-th block. The mapping Xp : C
K → C

T×N :
sp(n) 7→ Xp(sp(n)) stands for the encoder at the Tx, where the

integer T is the number of symbols after the encoding procedure.

To keep the discussion simple, we assume here that all Txs have

identical block space-time encoders, i.e., Xp = X , ∀p ∈ 1, P .

The rate of the code is denoted by R := K/T . The symbol Hp ∈
C

N×M is the channel matrix between the p-th Tx and the Rx. The

(x, y)-th component of Hp gives the complex gain between the x-

th antenna of the p-th Tx and the y-th antenna of Rx. The symbol

V (n) ∈ C
T×M stands for the noise matrix, whose elements are

i.i.d. zero-mean complex random variables, with variance σ2
V .

For the present study, the channel matrices H1, . . . , HP are as-

sumed uknown. For a linear receiver to ideally suppress MAI, and

self-interference, a sufficient number of degrees of freedom is nec-

essary. This is quantified by the inequality PK < MT [7, 8]. The

proposed kernel-based receiver will not follow such a restriction. On

the contrary, the numerical examples will be developed for the case

where PK ≥ MT .

Regarding the encoding procedure, we consider in this study two

cases.

1. The Orthogonal Space-Time Block Codes (OSTBC) frame,

where the mapping Xp is defined in [6]. For more details on

the encoding, the decoding, and their application, the reader

is referred to [6–8], and to the references therein.

2. The encoding procedure for the proposed kernel-based re-

ceiver is given by the following simple mapping: let K :=
T := 1, i.e., each block contains only a single symbol, and

Xp : C → C
1×N : s 7→ [s, s, . . . , s], ∀p ∈ 1, P .

In other words, at every block n, a single symbol is transmit-

ted simultaneously by every antenna of the Tx. The decoder

operates simply on a symbol-by-symbol basis.

Among the P Txs, we identify a number of L ≤ P of them as

the Transmitters Of Interest (TOI), whose transmitted symbols need

to be identified.

2.1. Processing prior the signal enters the receiver

To make notation easier to follow, and to work into real Euclidean

spaces instead of complex ones, we introduce some preprocessing

for the received signal, prior this enters the receiver (see Fig. 2).

First, let us define the mapping M := vect(M ), where vect
stands for the standard column stacking operation, and M is any

matrix. Now, take Y (n) from (1), and define also

Y1(n) :=
[

ℜ(Y (n))
ℑ(Y (n))

]

, Y2(n) :=
[

ℑ(Y (n))
−ℜ(Y (n))

]

, (2)

where ℜ(·) and ℑ(·) denote the real and imaginary parts of a com-

plex vector, respectively. The reason for introducing the above quan-

tities is the following. Assume that the vector-valued function f in
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Y (n) f (Y1(n)), f (Y2(n))Y1(n), Y2(n)

sn ≈ f (Y1(n)) + if (Y2(n))

Y (n)
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Fig. 2. Model of the receiver. The receiver is the vector-valued

function f := [f1, . . . , fL]t, where each component fl is assumed

to belong to some Reproducing Kernel Hilbert Space (RKHS) Hl.

Our goal is to find such an f such that the difference f (Y1(n)) +
if (Y2(n))− sn, when viewed via some user-defined loss function,

becomes sufficiently small.

Fig. 2 is linear (and continuous). Then, each component fl of f

is also linear. By the Riesz representation theorem, there exists a

unique vector vl, such that fl(Y) = vt
lY , ∀Y (the vectors vl, Y

are of appropriate dimension). Partition now the vector vl in two

vectors vl1, vl2 of equal length, as in vl = [vt
l1, v

t
l2]

t. Then, it is

easy to verify by (2) that

fl(Y1(n)) = v
t
lY1(n) = ℜ(w∗

l Y (n)),

fl(Y2(n)) = v
t
lY2(n) = ℑ(w∗

l Y (n)),

where wl := vl1 + ivl2, and w∗
l is its complex conjugate transpose

vector. Hence, Fig. 2 covers the linear receiver case, whenever f is

assumed linear. However, the present study considers a much wider

choice for the receiver, since it allows each component of f to be-

long to a strictly larger superset of the Euclidean space, namely a

Reproducing Kernel Hilbert Space (RKHS) (see Section 3.1).

Assume, now, the sequence of incoming data in the receiver as

yn := Yn mod 2+1(n), ∀n ∈ Z≥0.

This sequence (yn)n∈Z≥0
together with the a known training se-

quence of symbols (sn)n∈Z≥0
transmitted from the TOI, will be

used for the training of our receiver.

3. PRELIMINARIES

3.1. Reproducing Kernel Hilbert Space (RKHS).

Henceforth, the symbol H will stand for a (general infinite dimen-

sional) Hilbert space equipped with an inner product denoted by

〈·, ·〉. The induced norm is ‖·‖ := 〈·, ·〉1/2.

Assume a real Hilbert space H whose elements are functions

defined on R
m, i.e., a point in H is a function f : R

m → R, for

some m ∈ Z>0. The function κ(·, ·) : R
m × R

m → R is called a

reproducing kernel of H if (i) κ(y, ·) ∈ H, ∀y ∈ R
m, and (ii) the

following reproducing property holds

f(y) = 〈f, κ(y, ·)〉, ∀y ∈ R
m, ∀f ∈ H. (3)

In this case, H is called a Reproducing Kernel Hilbert Space (RKHS)

[1].

Celebrated examples of reproducing kernels are i) the linear ker-

nel κ(y1, y2) := yt
1y2, ∀y1, y2 ∈ R

m (here the associated RKHS

is the space R
m itself [1]), and ii) the Gaussian kernel κ(y1, y2) :=

exp(− (y1−y2)t(y1−y2)

2σ2 ), ∀y1, y2 ∈ R
m, where σ > 0 (here the

RKHS is of infinite dimension [1]).

Now, assume a number of L (see Fig. 2) RKHSH1, H2, . . . ,HL,

and define the Cartesian product space H := H1 × · · · × HL. An

element of H can be written apparently as f := [f1, . . . , fL]t,



where f1 ∈ H1, . . . , fL ∈ HL. To make H a Hilbert space,

we need to define a suitable inner product. In the case where the

Hilbert spaces H1, . . . ,HL are identical, we achieve this via a pos-

itive definite symmetric matrix P : for any f , g ∈ H, 〈〈f , g〉〉 :=
∑L

l,l′=1 Pll′〈fl, gl′〉 = trace(P [〈fl, gl′〉]), where the symbol [〈fl, gl′〉]

stands for a matrix whose (l, l′)-th element is 〈fl, gl′〉. Otherwise,

in the case where the RKHS H1, . . . ,HL are in generall different,

we use a block diagonal positive definite matrix P . Clearly, for both

cases, the induced norm |||·||| := 〈〈·, ·〉〉1/2.

3.2. Subgradient

Now, we give a concept of fundamental importance for the devel-

opement of the proposed algorithm in Section 5.

Given a continuous convex function L : H → R, any element

of the subdifferential of L, i.e., of

∂L(f ) := {h ∈ H : 〈〈g − f , h〉〉 + L(f ) ≤ L(g),∀g ∈ H} ,

is called a subgradient of L at f , and will be denoted by L′(f ). In

other words, L′(f ) ∈ ∂L(f ). Note that for any continuous con-

vex function L we can always define a subgradient, since for such a

function, we have ∂L(f ) 6= ∅, ∀f ∈ H. Note also that 0 ∈ ∂L(f )
iff f ∈ arg ming∈H L(g). The function L has a unique subgradi-

ent at f , if L is differentiable at f . Then, this unique subgradient is

nothing but the well-known derivative L′(f ).

4. COST FUNCTIONS

As we have seen in Fig. 2, the objective of our receiver is to find

f ∈ H such that the difference f (Y1(n)) + if (Y2(n)) − sn

becomes sufficiently small, when evaluated by a user-defined cost

function. In what follows, we introduce a framework such that any

continuous convex function, even non-differentible, can be used as

the cost function in the design. Due to lack of space, only two ex-

amples of cost functions will be presented, leaving the discussion of

a larger variety of examples for a future work.

Choose any convex, continuous function L : H → R, which

quantifies the “discrepancy” between the output of the receiver f (y)
and the desired responce s. Choose also a nonnegative number ǫ in

order to obtain a robust version, called ǫ-insensitive function, of L:

Lǫ(f ) := max{0,L(f ) − ǫ}, ∀f ∈ H. (4)

Notice that Lǫ is a nonnegative function. Such a modification of an

objective function is widely used in robust statistics with numerous

applications in modern pattern recognition and kernel methods [1].

Example 1 (ǫ-insensitive quadratic loss function with l2 norm.) Given

a positive definite symmetric matrix Q ∈ R
L×L, define the in-

ner product in the Euclidean space R
L as 〈x1, x2〉Q := xt

1Qx2,

∀x1, x2 ∈ R
L. The norm, thus, in R

L becomes ‖·‖Q := 〈·, ·〉1/2
Q .

Define now the function L(f ) := ‖f (y) − s‖2
Q , ∀f ∈ H.

The subdifferential of the ǫ-insensitive function of (4) becomes as

follows, depending on the location of the point f .

1. L(f ) < ǫ. Then, we have ∂Lǫ(f ) = {0}.

2. L(f ) > ǫ. Then, ∂Lǫ(f ) = {P −1[2
∑L

l′=1 Ql′l(fl′(y) −

sl′)κl(y, ·)]}, where the symbol [2
∑L

l′=1 Ql′l(fl′(y)−sl′)κl(y, ·)]
stands for a vector of length L, whose l-th component is the

quantity 2
∑L

l′=1 Ql′l(fl′(y) − sl′)κl(y, ·).

3. L(f ) = ǫ. Then, ∂Lǫ(f ) = {θP −1[2
∑L

l′=1 Ql′l(fl′(y) −
sl′)κl(y, ·)] : θ ∈ [0, 1]}.

Example 2 (ǫ-insensitive linear loss function with l1 norm.) Let

L(f ) := ‖f (y) − s‖2
1, ∀f ∈ H, where ‖x‖1 :=

∑L
l=1 |xl|, for

any x := [x1, . . . , xL]t ∈ R
L.

The function Lǫ is not everywhere differentiable. Its subdiffer-

ential, instead, can be calculated and is given as follows. Given an

f , define first the index set J = {l1, . . . , lν}, which contains all

those indices l for which fl(y) − sl = 0, i.e., J := {l ∈ 1, L :
fl(y)− sl = 0}. Then, the subdifferential is obtained depending on

where the point f is and whether the index J is the empty set or not.

Hence,

1. L(f ) < ǫ. Then, we have ∂Lǫ(f ) = {0}.

2. L(f ) > ǫ, and J = ∅. Then, Lǫ is differentiable at such

an f , so that its subdifferential contains only one element,

its derivative: ∂Lǫ(f ) = {P −1[sign(fl(y) − sl)κl(y, ·)]},

where the symbol [sign(fl(y) − sl)κl(y, ·)] stands for the

vector of length L, whose l-th component is given by

sign(fl(y) − sl)κl(y, ·).

3. L(f ) > ǫ, and J 6= ∅. Then the subdifferential becomes

∂Lǫ(f ) = conv{P −1V1, . . . , P
−1V2ν}, where the opera-

tor conv stands for the convex hull of a set, and ∀λ ∈ 1, 2ν ,

Vλl :=

{

sign(fl(y) − sl)κl(y, ·), if l /∈ J,

±κl(y, ·), if l ∈ J.

In other words, the vector-valued functions V contain either

+κl(y, ·) or −κl(y, ·) in the slots l determined by the index

set J , and sign(fl(y)− sl)κl(y, ·) in all the other positions.

This is why the total number of Vλ becomes 2ν .

4. L(f ) = ǫ, and J = ∅. Then, we obtain

∂Lǫ(f ) = {θP −1[sign(fl(y) − sl)κl(y, ·)] : θ ∈ [0, 1]}.

5. L(f ) = ǫ, and J 6= ∅. Then,

∂Lǫ(f ) = {0, P −1V1, . . . , P
−1V2ν}.

5. ALGORITHM

We present now the algorithm, based on the Adaptive Projected Sub-

gradient Method (APSM) [9]. The algorithm can accommodate any

nonnegative continuous convex function.

Each (yn, sn), taken from the sequence of training data, defines

a cost function similarly to the examples given in Section 4, i.e.,

it defines an Lǫ(f ; yn, sn), ∀f ∈ H, where in this notation we

explicitly state the dependence of the function Lǫ on the parameters

(yn, sn). However, to simplify notation, we let from now and on,

Ln := Lǫ(·; yn, sn), ∀n ∈ Z≥0.

The introduced algorithm is capable of processing multiple cost

functions at each index n. Hence, at each n, apart from the natural

choice Ln, we allow the freedom of elaborating also cost functions

that correspond to indexes previous than n, i.e., Ln−1, . . . ,Ln−q+1,

for some positive integer q. In other words, data reuse or concurrent

processing is possible. To identify such cost functions processed at

each index n, we introduce here the index set Jn defined as:

Jn :=

{

0, n, if n < q − 1,

n − q + 1, n, if n ≥ q − 1.

That is, at every iteration index n, the algorithm processes the cost

functions Lj where j ∈ Jn.



Now, given the point fn ∈ H, let us define a subset of Jn:

In := {i ∈ Jn : Li(fn) 6= 0}.

Let also a number of convex weights {ω(n)
i }i∈In

⊂ (0, 1] such that
∑

i∈In
ω

(n)
i = 1. Then, for an arbitrary starting point f0 ∈ H,

form the sequence of estimates as

fn+1 =

{

fn − µn

∑

i∈In
ω

(n)
i

Li(fn)

|||L′
i
(fn)|||2

L′
i(fn), if In 6= ∅,

fn, if In = ∅,
(5)

where the extrapolation parameter µn can be chosen by the designer

from the interval [0, 2Mn], with

Mn :=















∑

i∈In
ω

(n)
i

L2
i
(fn)

|||L′
i
(fn)|||2

|||
∑

i∈In
ω

(n)
i

Li(fn)

|||L′
i
(fn)|||2

L′
i
(fn)|||2

, if In 6= ∅,

1, if In = ∅,

(6)

and Mn ≥ 1.

Under mild condition, the above algorithm enjoys several desir-

able properties for online designs, like monotone approximation to

the set of optimum receivers, strong convergence, asymptotic opti-

mality, etc, which will be presented elsewhere.

6. SPARSIFICATION

It can be shown (proof omitted due to lack of space) that the algo-

rithm in Section 5 gives a sequence of estimates (fn)n∈Z≥0
which

are expressed as a vector-valued series of kernels; given the arbitrary

starting point f0 ∈ H,

fn =
n−1
∑

j=0







γj1(n)κ1(yj , ·)
..
.

γjL(n)κL(yj , ·)






, ∀n ∈ Z>0. (7)

To keep the notation compact, we define here

kj(n) :=







γj1(n)κ1(yj , ·)
...

γjL(n)κL(yj , ·)






.

As the number of blocks n advances, more and more terms are added

in the series expansion of (7). This has an immediate unpleasant ef-

fect on the computational complexity and the memory requirements

of the system. To deal with such problems, sparsification of the ker-

nel series in (7) is necessary.

Our sparsification strategy is based on the addition of an extra

constraint on the optimization problem. Given a δ, define now the

closed ball

B[0, δ] := {f ∈ H : |||f ||| ≤ δ}.

Such a set is a closed convex set. Associated to a closed convex set

C is the metric projection mapping defined as the mapping PC :
H → C : f 7→ PC(f ), where PC(f ) is the unique point of C
such that |||f − PC(f )||| = inf{|||f − g||| : g ∈ C}. In particular,

the projection mapping for the closed ball above takes the following

simple form:

PB[0,δ](f ) =

{

f , if |||f ||| ≤ δ,
δ

|||f |||
f , if |||f ||| > δ,

∀f ∈ H. (8)

We force now the sequence of estimates (fn) to belong to B[0, δ].
As more and more terms gather in the kernel series of (7), it is likely

that at some point n, the estimate fn will have a norm greater than

δ, i.e., |||fn||| > δ. By (8), we see that if we project fn onto B[0, δ],
we obtain

PB[0,δ](fn) =

n−1
∑

j=0

δ

|||fn|||







γj1(n)κ1(yj , ·)
.
..

γjL(n)κL(yj , ·)






.

Since δ
|||fn|||

< 1, we can easily see that δ
|||fn|||

|γjl(n)| < |γjl(n)|,

∀l ∈ 1, L. Note that the terms in the kernel series with indexes less

than n − q + 1, i.e., 0, n \ Jn, are not affected by the recursive

procedure (5), since only the terms in the last q slots of the kernel

series change. If we additionaly assume that the above hypothesis

stands for a consecutive number of times n0, then, the coefficient
δn0

|||fn+n0−1|||···|||fn|||
< 1 multiplies those terms in the kernel series.

Hence, as more and more blocks of data arrive at the receiver, the

old terms in the kernel series expansion potentially tend to small

absolute values.

Note that all of the above calculations are of linear complexity

with respect to the unknown parameters, i.e., the coefficients of the

kernel series in (7).

As a step further, we introduce also a buffer which keeps only

a number of Lb kernel terms. In other words, we introduce here a

modification of the algorithm (5), (6):

f̃n+1 =











PB[0,δ](f̃n − µn

∑

i∈In
ω

(n)
i

Li(f̃n)

|||L′
i
(f̃n)|||2

L′
i(f̃n)),

if In 6= ∅,

PB[0,δ](f̃n), if In = ∅,

where the extrapolation parameter µn can be chosen by the designer

from the interval [0, 2Mn], with

Mn :=















∑

i∈In
ω

(n)
i

L2
i
(f̃n)

|||L′
i
(f̃n)|||2

|||
∑

i∈In
ω

(n)
i

Li(f̃n)

|||L′
i
(f̃n)|||2

L′
i
(f̃n)|||2

, if In 6= ∅,

1, if In = ∅,

and

f̃n =
n−1
∑

j=n−Lb







γ̃j1(n)κ1(yj , ·)
..
.

γ̃jL(n)κL(yj , ·)






, ∀n ∈ Z>0. (9)

To keep the number of kernel terms fixed and equal to Lb, a

strategy has to be introduced whenever the buffer becomes full and

new data arrive at the receiver. Apparently, for every new term, an-

other one has to be removed. How do we choose such a term? We

remove the term with the least contribution, with respect to norm,

in the kernel series (9). That is, we search in the buffer for the

term indexed by j∗(n) := min{ĵ(n) ∈ arg min{|||kj(n)||| : j ∈
n − Lb + 1, n \ Jn}}. In other words, we look first among those

terms in the buffer not concurrently processed at iteration n, i.e.,

j ∈ n − Lb + 1, n \Jn. We search for the terms with the least con-

tribution, with respect to norm, in the kernel series (7). Then among

these, we select the index j∗(n) which has stayed the longest in the

buffer.

7. NUMERICAL EXAMPLES

We consider the system of Fig. 1, with a number of P = 5 Txs and

an Rx with M = 2 antenna elements. For linear designs, we employ
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Fig. 3. Symbol Error Rates (SER) vs. SNR. Two linear RLS re-

ceivers, together with the OSTBC scheme are employed. The pro-

posed online kernel receiver was elaborated with a number of N = 1
and N = 3 array elements per Tx.

the Orthogonal Space-Time Block Codes (OSTBC) for increased di-

versity gain, together with the well-known Recursive Least Squares

(RLS) receiver in order to identify the unknown channel matrices

Hp, p ∈ 1, P , seen in (1). Each component of the channel matrix

Hp, p ∈ 1, P , is modeled as an i.i.d. zero-mean complex Gaussian

random variable with variance equal to 1 [8]. Moreover, indepen-

dency is assumed among all the components of each of Hp, and

among all channel matrices. Each component of the additive noise

(V (n)), in (1), is modeled as an i.i.d. Gaussian random process.

Here also, independency is assumed among all the components of

(V (n)). We set L := 2 as the number of Transmitters Of Interest

(TOI), whose symbols are to be identified. For simplicity, all the Txs

are assumed to have equal power. The SNR in Fig. 3 is measured as

the ratio of a single Tx’s power to the noise’s one. Depending on the

elaborated OSTBC, a different number of array elements N , per Tx,

are used. Here, we employ the Alamouti scheme [5], [6, (32)] where

N = 2, K = T = 2, and a 1/2-rate code [6, (37)] where N = 3
and K = 4, T = 8.

For the proposed nonlinear kernel receiver, we employed the

Gaussian kernel function, with a variance σ2 := 1, for working in an

infinite dimensional Reproducing Kernel Hilbert Space (RKHS). We

elaborated the non-differentiable cost function of Example 2, with

the parameter ǫ := 0.1. The matrix P used for the definition of the

Hilbert space H was set to P := (1/L)IL. A number of 8000 com-

plex training data (= 16000 real data according to the preprocessing

of Fig. 2) were used for the learning process of the kernel receiver.

The number of concurrent data, used at every index n, was set equal

to q = 3. We used a buffer length of Lb := 10000, with a ball radius

δ := 300. Separate testing data are used to validate the Symbol Error

Rate (SER) of each scheme, and a number of 100 experiments are

performed to average such a procedure. The relatively large num-

ber of used training data, for having the method converge, is mainly

due to the limited number of Rx antennas and the severe MAI of the

adopted scenario. Other scenarios, as well as techniques to increase

the speed of convergence, and to reduce the computational load of

the method will be discussed elsewhere.

As we have seen in Section 2, any linear receiver needs a suf-

ficient number of degrees of freedom to ideally suppress MAI and

self-interference. This is quantified by the inequality PK < MT .

However, in the present case, where the MAI is severe, we notice

that for both the Alamouti scheme PK = 5 · 2 ≥ 2 · 2 = MT , and

for the 1/2-rate code PK = 5 · 4 ≥ 2 · 8 = MT . In other words,

the RLS does not have enough degrees of freedom to combat MAI,

as we readily see by Fig. 3. We notice that the 1/2-rate code gives

better results than the Alamouti one, due to the increased value of

MT/K and N .

On the other hand, since the proposed nonlinear receiver op-

erates implicitly in infinite dimensional Reproducing Kernel Hilbert

Spaces (RKHS), Fig. 3 demonstrates that the obstacle of severe MAI

is eventually surmounted. We also notice that the proposed receiver

behaves well, even when a number of N = 1 array elements are

used per Tx. For the case where PK < MT , the proposed kernel

receiver produced similar results to the OSTBC scheme. Due to lack

of space, more simulation results, which will thoroughly validate the

various system parameters, will be presented elsewhere.

8. CONCLUSIONS

A novel online receiver for multiaccess MIMO channels was intro-

duced by using kernel functions. The receiver is built by a number of

Reproducing Kernel Hilbert Spaces (RKHS), and viewed as an on-

line multiregression optimization task, where any continuous convex

cost function, even non-differentiable can be employed. The compu-

tational complexity of the design scales linearly to the number of un-

known parameters. Sparsification issues were also addressed to deal

with computational and memory limitations of the online system.

Simulation results showed that the proposed nonlinear receiver over-

comes the physical limitations, which are inherent in linear receivers

with Orthogonal Space-Time Block Codes (OSTBC), in cases where

the MultiAccess Interference (MAI) is severe.
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